( ) ( ) QM A1. The operator ˆR is defined by R ˆ ψ( x) = Re[ ψ( x)] ). Is ˆR a linear operator? Explain. (it returns the real part of ψ ( x) SOLUTION

Size: px
Start display at page:

Download "( ) ( ) QM A1. The operator ˆR is defined by R ˆ ψ( x) = Re[ ψ( x)] ). Is ˆR a linear operator? Explain. (it returns the real part of ψ ( x) SOLUTION"

Transcription

1 QM A The operator ˆR is defined by R ˆ ψ( x) = Re[ ψ( x)] (it returns the real part of ψ ( x) ). Is ˆR a linear operator? Explain. SOLUTION ˆR is not linear. It s easy to find a counterexample against the hypothesis of linearity: Investigate the function f, for which f( x) = i (it always returns i, no matter what x is). Now R ˆ f ( x ) = Re[ f ( x )] = Re[ i ] = but Rˆ i f( x) = Re[ i f( x)] = Re[ ] = irf ˆ ( x) =

2 QM A 3 Find the energy levels of a spin s = particle whose Hamiltonian is given by ˆ α H Sˆ Sˆ Sˆ β Sˆ = + x y z z, where α and β are constants. SOLUTION We rewrite the Hamiltonian: ({ } ) { } ˆ α ˆ ˆ ˆ β ˆ α ˆ ˆ ˆ β H S S S S S S S Sˆ α Sˆ 3Sˆ β = + = = Sˆ x y z z z z z z z We see that the Hamiltonian is diagonal in the sm, basis: s ( ˆ ˆ ) ˆ { α( ss 3 m ) βm} sm, s s s ˆ α β α β H sm, = S 3 S S sm, ss 3 m m sm, s z z = s + = s s s = + So ( 3 ) E= α s s+ m βm = α m βm and thus 5 5 s s s s Em ( = ) = α 3 + β = α + β = 3α + β s Em ( =+ ) = α 3 β = α β = 3α β s Em ( = ) = α 3 + β = α + β = 3α + β s Em ( =+ ) = α 3 β = α β = 3α β s

3 QM A3 QM A4

4 QM B Consider a system which is initially in the normalized state ψθφ (, ) = Y ( θφ, ) + ay ( θφ, ) + Y ( θφ, ),,, 5 5 in which a is a positive real constant. a. Find a. b. If L were measured, what values could one obtain, and with what probabilities? z We now measure L and find the value. z c. Calculate L and L. x y d. Calculate the uncertainties L and L and their product L L. You may use the x y x y equality L = L without proving it first. x y SOLUTION Part a. Writing ψθφ (, ) = cy ( θφ, ) we require m= m, m m= c m =, in other words a + = + a = a = a= Part b. The probability to measure Lz = m equals c m, so 5 Pm ( = ) = c = = % 3 5 Pm ( = ) = c = = 6% + 5 Pm ( =+ ) = c = = %

5 Part c. The wave function has collapsed to Y ( θφ, ) = θφ,,. We have, L = ( L + L) and L = il ( L), so now x + y + L = ( L + L) and L = il ( L) x + y + ψ L ψ =, L, +, L, = C,, +, = x + + ψ L ψ = i, L, + i, L, = ic,, + i, = y where C is some constant and is the zero-length ket (for which = ). Now for = and m =, we have L = ( + ) = = L + L + L = L + L + L = L + L = L +( ) x y z x y z x z x L = L = so that x y ( L ) = ( L L ) = L L = L =, and, similarly, L = x x x x x x y We find L L = ( )( ) = x y

6 QM B The Hamiltonian for a one-dimensional harmonic oscillator is ˆ pˆ H m x m = + ω ˆ. We write its energy eigenkets as n ( n =,,,... ) for energy E = ( n+ ) ω. a. Suppose the system is in the normalized state ϕ given by ϕ = c + c, and that the expectation value of the energy is known to be ω. What are c and c? i b. Now choose c to be real and positive, but let c have any phase: c = c e θ. Suppose further that not only is the expectation value of the energy known to be ω, but the expectation value of x is also known: ϕ x ϕ =. Calculate the phase angle θ. mω c. Now suppose the system is in the state ϕ at time t =, i.e., ψ( t = ) = ϕ. Calculate ψ () t at some later time t. Use the values of c and c you found in parts a. and b. d. Also calculate the expectation value of x as a function of time. With what angular frequency does it oscillate? Again, use the values of c and c you found in parts a. and b. n SOLUTION Part a. 3 c c 3 3 ω = ϕ H ϕ = c E + c E = c ω+ c ω = ω c + c + = Normalization: c + c =, so we have + = c + c = 3 c c c = c =

7 Part b. Recall xˆ = ( aˆ+ aˆ ) mω, so we have xˆ = aˆ+ aˆ mω = ϕ x ϕ = ϕ aˆ ϕ + ϕ aˆ ϕ = mω mω mω * * * * ( c c ) aˆ ( c c ) ( c c ) aˆ ( c c ) = mω mω Now ( c ) caˆ c aˆ ϕ = aˆ c + = = ( ) ( ) ( (...) ) aˆ ϕ = aˆ c + c = caˆ + caˆ = c + = ϕ x ϕ = ϕ aˆ ϕ + ϕ aˆ ϕ = mω mω mω * = c + c mω * * * ( c ) c + c mω * * * + c + (...) = because c c + c c = mω mω c + c c = We get = * * = c + c = c + c = c e + c e = mω mω iθ iθ cosθ = θ = π( = 45 ) 4 (cos θ ) Part c. 3 iet / iet / i ω t iπ /4 i ω t ψ () t = ce + ce = e + e e Part d. We had seen ϕ ϕ x * * * Re c c c c = + = mω mω c c, so now

8 iωt 3 3 iπ iωt iωt iπ iωt 4 4 ψ( t) x ψ( t) = Re( e e e ) = Re( e e e ) = mω mω = cos( ωt+ π) = cos( ωt π) 4 4 mω mω The angular frequency of oscillation is ω. (from

9

10 QM B3

11 QM B4

12 E&M A An isolated sphere of perfectly conducting material is surrounded by air. Though normally a good insulator, air breaks down (it becomes conductive) for electric fields beyond 3. kv/mm (the so-called dielectric strength of air). The sphere s radius is 5. cm. What is the maximum amount of electrostatic energy the sphere can store before breakdown occurs? Assume the electrostatic potential is zero at infinite distance from the sphere. SOLUTION For a charge q on the sphere we have q ER E= k q= R k q V = k = ER R. ER So now U = qv = ER = πε E R = π (8.85 )(3 ) (5 ) =.63 = 63 mj k

13 E&M A The diagram shows part of an electronic circuit. Calculate the potential at point P. SOLUTION Left two inductors: 3 = + = + = = L = 4. mh eff L L L 6 4 eff di V 8 ( ) From the mh inductor we find = = = 3 A/s 3 dt L di 3 So V = V = L = 4 3 = V V = V P eff P dt

14 E&M A3

15 E&M A4

16 E&M B A flat square loop of wire of length a on each side carries a stationary current I. Calculate the magnitude of the magnetic field at the center of the square. SOLUTION This field is 4 times the field of one side. The field of one side is the field at a point a distance a away from wire. µ Idl rˆ µ µ a µ Ia dy db(for one side) = = Idysinφ = Idy = 4π r 4π r 4π y + a y + a 4 π ( y + a ) 3/ a a a Ia dy Ia dy Ia y Ia a 3/ 3/ / / π a ( y a ) π ( y a ) π a ( y a ) π a ( a + a ) µ µ µ µ B(of one side) = = = = = 4 4 µ I µ I µ I = = = / π ( a ) π a π a B tot µ I µ I = 4 = π a π a The integral must be provided in the cheat sheet: EM Hard

17 E&M B All space is filled with a material with uniform, fixed magnetization M, except for the region < z< a, in which there is vacuum. The magnetization is M= Mu, ˆ where û is a unit vector in the yz plane that makes an angle θ with the z-axis: uˆ = (sin θ) yˆ + (cos θ) z ˆ. Calculate the magnetic field B and the auxiliary field H everywhere. SOLUTION There are no free current densities, so if there s a B field it must be due to bound currents. The bound volume current density J = M= b because M is uniform. The bound surface ± sinθ current density is K = M n ˆ = M sinθ M b = for the surface at z = (plus sign) cosθ ± and the surface at z= a (minus sign). It follows from symmetry and Ampère s law that these bound currents give rise to a uniform magnetic field B= ( µ M sin θ) y ˆ inside the gap; outside the gap, B=. B The auxiliary field follows from B= µ ( H+ M) H= M µ B ( µ M sin θ) () In the gap: H= M= y ˆ = ( M sin θ ) y ˆ µ µ B () Outside the gap: H= M= M= ( Msin θ) yˆ ( Mcos θ) z ˆ µ To verify this result we can use the magnetostatic charge density. For instance, for the bottom surface we have σ = M n ˆ = M = Mcosθ M z. From Gauss s law for magnetostatics, we have H d a = q. Applying this to a pillbox of area A enclosing part of the surface, calling the M,encl S auxiliary field inside/outside gap, H i / H o, we find H zˆa+ H ( z ˆ) A= Aσ H H = σ = Mcosθ. i o M i, z o, z M This agrees with our result H = ( M sin θ ) y ˆ i and H = ( Msin θ) yˆ ( Mcos θ) zˆ = H ( Mcos θ) z ˆ o i H H = ( M cos θ ) z i o ˆ

18 E&M B3

19 E&M B4

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Preliminary Examination - Day 2 Friday, May 11, 2018

Preliminary Examination - Day 2 Friday, May 11, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Friday, May, 8 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Quantum Mechanics (Topic ). Each

More information

Preliminary Examination - Day 1 Thursday, August 9, 2018

Preliminary Examination - Day 1 Thursday, August 9, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August 9, 8 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Quantum Mechanics (Topic

More information

Course Updates. 2) This week: Electromagnetic Waves +

Course Updates.  2) This week: Electromagnetic Waves + Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr1/physics272.html Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

More information

Preliminary Examination - Day 1 Thursday, May 10, 2018

Preliminary Examination - Day 1 Thursday, May 10, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, May, 28 This test covers the topics of Classical Mechanics (Topic ) and Electrodynamics (Topic 2). Each topic has 4 A questions

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M.

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M. PhD QUALIFYING EXAMINATION PART A Tuesday, January 3, 212, 1: 5: PM Work each problem on a separate sheet(s) of paper and put your identifying number on each page Do not use your name Each problem has

More information

xp ih) px pxih = xppx xppx + pxih pxih = 0

xp ih) px pxih = xppx xppx + pxih pxih = 0 QM A1 Method (1) Use [ x, p] = xp px = i xp = px + i and px = xp i Then [ xp, px] = xppx px( xp) = xppx px( px + ih) = xppx ( px) px pxih = = xppx ( xp ih) px pxih = xppx xppx + pxih pxih = Method () (

More information

APPLICATIONS OF GAUSS S LAW

APPLICATIONS OF GAUSS S LAW APPLICATIONS OF GAUSS S LAW Although Gauss s Law is always correct it is generally only useful in cases with strong symmetries. The basic problem is that it gives the integral of E rather than E itself.

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

Solve: From Example 33.5, the on-axis magnetic field of a current loop is

Solve: From Example 33.5, the on-axis magnetic field of a current loop is 33.10. Solve: From Example 33.5, the on-axis magnetic field of a current loop is B loop ( z) μ0 = We want to find the value of z such that B( z) B( 0) 0 0 3 = 3 ( z + R ) ( R ) =. 3 R R ( z R ) z R z R(

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Chapter 6. Magnetostatic Fields in Matter

Chapter 6. Magnetostatic Fields in Matter Chapter 6. Magnetostatic Fields in Matter 6.1. Magnetization Any macroscopic object consists of many atoms or molecules, each having electric charges in motion. With each electron in an atom or molecule

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

DEPARTMENT OF PHYSICS BROWN UNIVERSITY Written Qualifying Examination for the Ph.D. Degree January 26, 2007 READ THESE INSTRUCTIONS CAREFULLY

DEPARTMENT OF PHYSICS BROWN UNIVERSITY Written Qualifying Examination for the Ph.D. Degree January 26, 2007 READ THESE INSTRUCTIONS CAREFULLY DEPARTMENT OF PHYSICS BROWN UNIVERSITY Written Qualifying Examination for the Ph.D. Degree January 26, 2007 READ THESE INSTRUCTIONS CAREFULLY 1. The time allowed to complete the exam is 12:00 5:00 PM.

More information

Notes 18 Faraday s Law

Notes 18 Faraday s Law EE 3318 Applied Electricity and Magnetism Spring 2018 Prof. David R. Jackson Dept. of EE Notes 18 Faraday s Law 1 Example (cont.) Find curl of E from a static point charge q y E q = rˆ 2 4πε0r x ( E sinθ

More information

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number: Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

More information

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2 Physics 443 Prelim # with solutions March 7, 8 Each problem is worth 34 points.. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator H p m + mω x (a Use dimensional analysis to

More information

ECE 341 Test 2, Spring 2019 Your Name Tue 4/16/2019

ECE 341 Test 2, Spring 2019 Your Name Tue 4/16/2019 Problem 1. Electrostatics One surface of an infinitely large ideal conductor plate is at the plane x = 0 of the Cartesian coordinate system, with the x-y plane being the plane of the paper and the z axis

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements 6.013 Recitation 11 Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements A. Introduction The behavior of most electric devices depends on static or slowly varying (quasistatic 1 ) electric

More information

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell 1. Review of Magnetostatics in Magnetic Materials - Currents give rise to curling magnetic fields:

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes!

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes! Physics 2102 Gabriela González Marathon review of the course: 15 weeks in ~60 minutes! Fields: electric & magnetic electric and magnetic forces on electric charges potential energy, electric potential,

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

3. Calculating Electrostatic Potential

3. Calculating Electrostatic Potential 3. Calculating Electrostatic Potential 3. Laplace s Equation 3. The Method of Images 3.3 Separation of Variables 3.4 Multipole Expansion 3.. Introduction The primary task of electrostatics is to study

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important! Gauss s Law The first Maxwell quation A very useful computational technique This is important! P05-7 Gauss s Law The Idea The total flux of field lines penetrating any of these surfaces is the same and

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

ECE 3318 Applied Electricity and Magnetism Spring 2018 Homework #7

ECE 3318 Applied Electricity and Magnetism Spring 2018 Homework #7 EE 3318 Applied Electricity and Magnetism Spring 2018 Homework #7 Date assigned: Tuesday, March 6, 2018 Date due: Tuesday, March 20, 2018 Do Probs. 1, 2, and 7-12. (You are welcome to do the other problems

More information

Calculations of Magnetic Fields from Known Current Distributions. B d B2 r 0I B 2 r

Calculations of Magnetic Fields from Known Current Distributions. B d B2 r 0I B 2 r Calculations of Magnetic Fields from Known Current Distributions In the absence of magnetic materials this is a relatively simple problem analogous to finding the electric field with known charge distributions.

More information

Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 2016

Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 2016 Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 016 Multiple choice conceptual questions 1. An infinitely long, straight wire carrying current passes through the center of a

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121 Classical Mechanics/Electricity and Magnetism Preliminary Exam August 20, 2008 09:00-15:00 in P-121 Answer THREE (3) questions from each of the TWO (2) sections A and B for a total of SIX (6) solutions.

More information

Lecture 16.1 :! Final Exam Review, Part 2

Lecture 16.1 :! Final Exam Review, Part 2 Lecture 16.1 :! Final Exam Review, Part 2 April 28, 2015 1 Announcements Online Evaluation e-mails should have been sent to you.! Please fill out the evaluation form. May 6 is deadline.! Remember that

More information

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False)

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False) PHY 2049C Final Exam. Summer 2015. Name: Remember, you know this stuff Answer each questions to the best of your ability. Show ALL of your work (even for multiple choice questions), you may receive partial

More information

Physics Qual - Statistical Mechanics ( Fall 2016) I. Describe what is meant by: (a) A quasi-static process (b) The second law of thermodynamics (c) A throttling process and the function that is conserved

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ.

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ. Directions for all homework submissions Submit your work on plain-white or engineering paper (not lined notebook paper). Write each problem statement above each solution. Report answers using decimals

More information

1 Recall what is Spin

1 Recall what is Spin C/CS/Phys C191 Spin measurement, initialization, manipulation by precession10/07/08 Fall 2008 Lecture 10 1 Recall what is Spin Elementary particles and composite particles carry an intrinsic angular momentum

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions Second Year Electromagnetism Summer 2018 Caroline Terquem Vacation work: Problem set 0 Revisions At the start of the second year, you will receive the second part of the Electromagnetism course. This vacation

More information

Phys 4322 Final Exam - Solution May 12, 2015

Phys 4322 Final Exam - Solution May 12, 2015 Phys 4322 Final Exam - Solution May 12, 2015 You may NOT use any book or notes other than that supplied with this test. You will have 3 hours to finish. DO YOUR OWN WORK. Express your answers clearly and

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

Electricity. Revision Notes. R.D.Pilkington

Electricity. Revision Notes. R.D.Pilkington Electricity Revision Notes R.D.Pilkington DIRECT CURRENTS Introduction Current: Rate of charge flow, I = dq/dt Units: amps Potential and potential difference: work done to move unit +ve charge from point

More information

B r Solved Problems Magnetic Field of a Straight Wire

B r Solved Problems Magnetic Field of a Straight Wire (4) Equate Iencwith d s to obtain I π r = NI NI = = ni = l π r 9. Solved Problems 9.. Magnetic Field of a Straight Wire Consider a straight wire of length L carrying a current I along the +x-direction,

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Physics 11b Lecture #3. Electric Flux Gauss s Law

Physics 11b Lecture #3. Electric Flux Gauss s Law Physics 11b Lecture #3 lectric Flux Gauss s Law What We Did Last Time Introduced electric field by Field lines and the rules From a positive charge to a negative charge No splitting, merging, or crossing

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages

Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages Lecture 0 March /4 th, 005 Capacitance (Part I) Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 10.1-6, Pages 8-94 Assignment: Assignment #10 Due: March 31 st, 005 Preamble: Capacitance

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination January 20, 2015, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information

MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics. Problem Set 8 Solution

MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics. Problem Set 8 Solution MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics 8.0 with Kai Spring 003 Problem : 30- Problem Set 8 Solution Determine the magnetic field (in terms of I, a and b) at the origin due to the current loop

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2013, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2013, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination August 20, 2013, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information

Physics 322 Midterm 2

Physics 322 Midterm 2 Physics 3 Midterm Nov 30, 015 name: Box your final answer. 1 (15 pt) (50 pt) 3 (0 pt) 4 (15 pt) total (100 pt) 1 1. (15 pt) An infinitely long cylinder of radius R whose axis is parallel to the ẑ axis

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

Mathematical Review for AC Circuits: Complex Number

Mathematical Review for AC Circuits: Complex Number Mathematical Review for AC Circuits: Complex Number 1 Notation When a number x is real, we write x R. When a number z is complex, we write z C. Complex conjugate of z is written as z here. Some books use

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

Physics 1402: Lecture 18 Today s Agenda

Physics 1402: Lecture 18 Today s Agenda Physics 1402: Lecture 18 Today s Agenda Announcements: Midterm 1 distributed available Homework 05 due Friday Magnetism Calculation of Magnetic Field Two ways to calculate the Magnetic Field: iot-savart

More information

Physics 11b Lecture #13

Physics 11b Lecture #13 Physics 11b Lecture #13 Faraday s Law S&J Chapter 31 Midterm #2 Midterm #2 will be on April 7th by popular vote Covers lectures #8 through #14 inclusive Textbook chapters from 27 up to 32.4 There will

More information

Vector Potential for the Magnetic Field

Vector Potential for the Magnetic Field Vector Potential for the Magnetic Field Let me start with two two theorems of Vector Calculus: Theorem 1: If a vector field has zero curl everywhere in space, then that field is a gradient of some scalar

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED SEMESTER, 015 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron Electric Field Electric field Space surrounding an electric charge (an energetic aura) Describes electric force Around a charged particle obeys inverse-square law Force per unit charge Electric Field Electric

More information

PHY481 - Lecture 29 Chapter 9 of PS, Chapters 6,7 of Griffiths

PHY481 - Lecture 29 Chapter 9 of PS, Chapters 6,7 of Griffiths PHY481 - Lecture 29 Chapter 9 of PS, Chapters 6,7 of Griffiths A. Energy stored in inductors and in magnetic fields An external voltage source must be used to set up a magnetic field in an inductor. The

More information

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00 1 Preliminary Exam: Electromagnetism, Thursday January 12, 2017. 9:00-12:00 Answer a total of any THREE out of the four questions. For your answers you can use either the blue books or individual sheets

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 14, 015 1:00PM to 3:00PM Modern Physics Section 3. Quantum Mechanics Two hours are permitted for the completion of this

More information

Last time. Gauss' Law: Examples (Ampere's Law)

Last time. Gauss' Law: Examples (Ampere's Law) Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iot-savart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field

More information

Class 11 : Magnetic materials

Class 11 : Magnetic materials Class 11 : Magnetic materials Magnetic dipoles Magnetization of a medium, and how it modifies magnetic field Magnetic intensity How does an electromagnet work? Boundary conditions for B Recap (1) Electric

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2005, 9:00 a.m. to 1:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2005, 9:00 a.m. to 1:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination August, 5, 9: a.m. to : p.m. Instructions: The only material you are allowed in the examination room is a writing instrument

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING : Electro Magnetic fields : A00 : II B. Tech I

More information

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1.

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1. 33.3. Model: The magnetic field is that of a moving charged particle. Visualize: The first point is on the x-axis, with θ a = 90. The second point is on the y-axis, with θ b = 180, and the third point

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Lecture 23: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Up until now, we have been discussing electrostatics, which deals with physics

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS A Homework #7 Benjamin Stahl March 3, 5 GRIFFITHS, 5.34 It will be shown that the magnetic field of a dipole can written in the following

More information

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations Electromagnetic Theory PHYS 4 Electrodynamics Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations 1 7.1.1 Ohms Law For the EM force Usually v is small so J = J = σ Current density

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

PHYS 110B - HW #4 Fall 2005, Solutions by David Pace Equations referenced as EQ. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #4 Fall 2005, Solutions by David Pace Equations referenced as EQ. # are from Griffiths Problem statements are paraphrased PHYS B - HW #4 Fall 5, Solutions by David Pace Equations referenced as EQ. # are from Griffiths Problem statements are paraphrased [.] Problem 8. from Griffiths Reference problem 7.3 figure 7.43. a Let

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

Principles of Physics II

Principles of Physics II Principles of Physics II J. M. Veal, Ph. D. version 18.05.4 Contents 1 Fluid Mechanics 3 1.1 Fluid pressure............................ 3 1. Buoyancy.............................. 3 1.3 Fluid flow..............................

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Exam 3 November 19, 2012 Instructor: Timothy Martin

Exam 3 November 19, 2012 Instructor: Timothy Martin PHY 232 Exam 3 October 15, 2012 Exam 3 November 19, 2012 Instructor: Timothy Martin Student Information Name and section: UK Student ID: Seat #: Instructions Answer the questions in the space provided.

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz Physics 1 / Summer 9 Name: ANSWER KEY h. 6 Quiz As shown, there are three negatie charges located at the corners of a square of side. There is a single positie charge in the center of the square. (a) Draw

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Physics 3211: Electromagnetic Theory (Tutorial)

Physics 3211: Electromagnetic Theory (Tutorial) Question 1 a) The capacitor shown in Figure 1 consists of two parallel dielectric layers and a voltage source, V. Derive an equation for capacitance. b) Find the capacitance for the configuration of Figure

More information